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We have developed a 1 + 1 D time dependent code for the descrip- 
tion of ion-impurity transport in a rotating tokamak plasma, using a 
pseudo-spectral discretization in the poloidal angle f3 and a staggered 
finite difference mesh in the minor radius r. The plasma is assumed to 
have a constant uniform temperature T. to be in the high collisionality 
( Pfirsch-Schluter) regime, and to contain electrons “e,” fuel ions “1,” 
and a single impurity species “Z” of charge eZ. where e is the proton 
charge. We are particularly interested in the case when: (1) flow 
velocities in the toroidal (symmetry) direction Q are in the range 
typical of neutral beam injection experiments, i.e., ~1~~~ < V,,, 6 klh,, 
(vr,,,=m is the thermal speed, m, is the mass); (2) the 
relative concentration of impurities in the plasma, fi,/ri,, is significant 
and comparable to that observed in present tokamaks, i.e., 
~<ii,Z=/i, ,z 1 in order of magnitude. The model fluid 
equations are obtained via a moment approach, and an expansion 
in powers of the small ordering parameter 6,,,= (m,v,JeS,) 
((l/n,) 1 &?,/arl) < 1 (B is the magnetic field) is then employed. The 
equations at each order in ~5,~ up to the second are solved, and the 
characteristic features of the results presented: to lowest order, 
outboard impurity peaking on each magnetic surface appears due to 
centrifugal forces; to first order, radial gradients driven ion-impurity 
friction gives rise to up-down asymmetries in the poloidal profiles; to 
second order, the radial profiles of density and rotation frequency 
evolve to steady state under the action of particle and angular 
momentum sources. The evolution of the poloidal profiles is 
decoupled from the evolution of the radial ones, thanks to the fact 
that the corresponding time scales belong to different orders in 6,,: an 
algorithm is proposed to treat the 2D problem, alternating the solu- 
tion of 1 D problems. 0 1992 Academic Press. Inc 

1. INTRODUCTION 

Control of the impurities concentration in the plasma 
constitutes a critical issue in present and future fusion 
experiments. As a measure of the collisional effects due to 
the presence of impurities in the plasma one can introduce 
the parameter 

where the sum runs over all ion species (fuel and 

impurities), nk is the density of the kth ion species of 
charge eZk, and n, is the electron density. While in a pure 
plasma Zen= 1, typically observed values are 22; if one 
assumes for simplicity that a single impurity species “Z” is 
present in the plasma, it is therefore interesting to consider 
the case when its concentration is such that 

n,Z2 cl=-%1 
n, 

in order of magnitude, because if Z $1 then Z,, z 1 + U. If 
(2) is satisfied, ion-impurity collisions are the main colli- 
sional mechanism for ion transport since, when ail species 
have the same temperature, 

Vif7 (m,n,lmini) v,; 
-N 

V rZ (nzZ2/nJ vii 

N Jm,lmi@ 1 

(here vjk is the inverse of the characteristic time required 
for a particle of species j to be scattered by 90” by colli- 
sions with particles of species k [3], and mi is the mass of 
the particle), i.e., the effect of ionelectron collisions on the 
ions is negligible. 

When for a given species the total collision frequency is 
much larger than the transit frequency (see (9)), a fluid 
description of that species is justified. The issue of 
impurity transport in toroidal magnetic configurations, in 
the limit of high (Pfirsch-Schluter) collisionality, was first 
addressed in [4]. The resulting so-called neoclassical 
theory of impurity transport-the word “neoclassical” is 
generally used here to denote features due to the toroidal 
geometry, as compared to the classical effects already 
present in a cylindrical plasma--can be very relevant to 
experiments because the particle diffusion coefficient D 
scales as 
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where psi- mjv,,j/eZjBs is the Larmor radius in the 
poloidal magnetic field, and v,,,~ 3 ,/m is the thermal 
speed. From (3) and (4) we see that, in the case of an 
impure plasma as compared to a pure one, the theory is 
nearer by a factor of 4% to explain the relatively 
small particle confinement times observed in present 
tokamaks. 

The practical interest for the effects of finite impurity 
flow velocities compared with the ion thermal speed (see, 
e.g., [S] for an early reference to this point) arises in the 
context of neutral beam heated tokamak plasmas. When 
the neutral injection is toroidally unbalanced it also 
provides an axial angular momentum source for the 
plasma, and measured [6] toroidal flow velocities are in 
the range 

system of time-dependent, nonlinear partial differential 
equations (PDE) in two space dimensions (axisymmetry is 
assumed in the third, toroidal coordinate). We propose 
here an algorithm that allows us to solve this 2D evolu- 
tion problem, alternating the integration of 1D systems in 
each of the two space directions. The method is tailored to 
the physics of the problem and takes full advantage of the 
fact that the profiles in radius and poloidal angle evolve 
neoclassically on separate time scales. Furthermore, we 
can afford, in principle, arbitrarily large poloidal varia- 
tions of the relevant plasma parameters. 

(5) 

Ion-impurity transport in a strongly rotating tokamak 
plasma is intrinsically two-dimensional. Differently from 
the case of small rotation, where the densities and the 
electric potential are in first approximation flux surface 
functions, inertial forces induce significant variations of 
those parameters on a given magnetic surface, as soon as 
the flow velocities become comparable to the thermal 
speed. (We notice, however, that also in slowly rotating 
plasmas, sensible poloidal variations of the pressure of the 
single species can arise, provided the ion-impurity friction 
is sufficiently large [7].) 

The model we present and solve here was derived in 
detail in [ 11, and preliminary results were already 
presented in [23]. The major features of the model are 
reviewed in Section 2. Ordering in one small parameter is 
used to obtain equations which describe the system on 
three different time scales; in Section 3 the lowest order 
(fastest) scale is considered; in Section 4 the intermediate 
one and in Section 5 the slowest one. Conclusions are 
summarized in Section 6. 

2. GENERAL FEATURES OF THE MODEL 

Neoclassical transport in strongly rotating impure 
tokamak plasmas has been studied in a number of papers 
([S-lo], and references therein). In particular, a fluid 
theory was proposed in [9], where a non-classical drag 
mechanism was able to explain the rate of radial transfer 
of axial angular momentum measured in the experiments, 
which is exceedingly large when compared with neoclassi- 
cal theory predictions to date. Both in [X, 93 it was 
assumed sufficient to approximate variations in poloidal 
angle through a Fourier expansion truncated to the first 
harmonic, and the amplitude of this modulation compared 
to the average value was taken as small in the plasma 
inverse aspect ratio E = u/R, (a and R, are the minor and 
major plasma radius, respectively). This allows an analytic 
treatment, but quickly becomes inadequate, when the 
rotation is very large, and causes variations on the surface 
comparable to the average value [13]. 

We give here an overview of the hydrodynamic model of 
ion-impurity transport in a strongly rotating collisional 
tokamak plasma, which is discussed in the next sections. By 
taking velocity moments of the Fokker-Planck equation 
one can build a hierarchy of fluid equations. This hierarchy 
can be truncated, assuming the plasma is in the high colli- 
sionality Plirsch-Schliiter regime; in that case, in fact, the 
dependence of the distribution function fi of the generic 
particle species j on the pitch angle is sufficiently smooth 
to be approximated by an expansion containing Legendre 
polynomials up to only quadratic terms. 

The unknowns of the system are now the moments off;, 
and they can be expanded in powers of a small parameter. 
In tokamaks the magnetic field is strong enough to render 
the ratio between the ion Larmor radius and the typical 
radial scale length very small. Furthermore, the conline- 
ment in tokamaks is provided by the poloidal component of 
the field, so that it is customary [ 1 l] to use the ratio 

6,, Et 
ion Larmor radius in the poloidal field 

characteristic radial scale length <1 (6) 

From a physical point of view the model discussed in as the small expansion parameter. In order to be able to 
the present paper contains, as compared to previous ones, describe radial transport with the model it will be sufficient 
all and only the purely classical and neoclassical contribu- to retain terms up to the second order in this expansion 
tions (no ad hoc terms) in the short mean free path [S, 111. Notice also that the ordering in dpi breaks down in 
regime; in particular, inertial viscous and friction effects the region of divertor tokamaks near the X-point, where the 
pertaining to a strongly rotating tokamak plasma are poloidal field goes to zero: our model, therefore, will not be 
included. applicable in that region. 

From a computational point of view, one must solve a In the time independent problem the essential point in 
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using the expansion in dPi is that each of the moment equa- 
tions contains terms arising from the term ejnjvj x B .V,f, in 
the kinetic equation; those terms have the form Ax B, 
where A is a generic tensor flux. Since B is the large marking 
parameter, the equation to O(6;; ’ ) will determine the flux 
Ay’, which is perpendicular to B, as a function of lower 
order quantities. The parallel fluxes Ai:’ then have to be 
solved for as functions of A ‘,“’ [ 11. 

In the time-dependent problem one can use a multiple 
time scale expansion of the form 

whereby, defining 

(7) 

diffusion coefficient scaling is D % p&viz, and one obtains 
from (10) 

(11) 

Comparing (9) and (11) it follows that the evolution of 
the radial profiles is very much slower (by two orders in SPi) 
than the evolution of the poloidul ones. This points to the 
possibility of decoupling the full 2D evolutionary problem 
into the alternating solution of 1D problems: such a strategy 
will be developed in the next sections. 

A few symplifying assumptions are used in the present 
paper. First, a uniform and constant temperature T, the 
same for all species, is assumed, obtaining in this way 
a dramatic reduction in the complexity of the model. 
(Recently, however, a theory has been presented including 
the plasma energy balance [21 I). The rationale here is that 
we are mainly interested in studying the confinement of par- 
ticles and particularly angular momentum from the point of 
view of collisional neoclassical theory, where the key role is 
played by the interspecies friction forces: since the thermal 
force [3] is known to give a comparable (not dominant) 
contribution to friction as the difference in flow velocities, 
we do not expect our results to be qualitatively wrong due 
to this simplification. Following (2) and (3) it is then further 
assumed that a single impurity species is present in the 
plasma, with a sufficiently large concentration to make 
negligible for ion species the effect of collisions with the 
electrons. Finally, a low beta large aspect ratio equilibrium 
with fixed circular concentric magnetic surfaces constitutes 
the background for the numerical solution of the transport 
model. 

and y being any variable representative of the state of the 
plasma, one simply means that rk/zk + i % O(SPi). 

It is easy to get a qualitative idea of the relationship 
between the fastest (ro) and the slowest (z2) time scales con- 
sidered in this paper. Let us start by comparing the time 
derivative term with, e.g., the pressure gradient, in the ion 
parallel momentum balance to lowest order; one obtains 

Bm.n,dVlli 
’ ’ at, N -TB.Vn[ (8) 

and for V,,, % u,,,, 

3. ZEROTH-ORDER TIME SCALE 

where we have introduced the ion transit frequency oti. 
Notice that the fastest evolution ends when one reaches 
equilibrium separately on each flux surface, i.e., r. is the 
time scale for the evolution of the poloidal profiles. We will 
see in Section 3 that the equations for the zeroth order 
steady state contain only poloidal derivatives. 

In order to estimate the slowest time scale consider a 
simple radial diffusion equation 

L=-- ,L)!!i! aii ia 
at, r & ( > ar (10) 

(we will obtain in Section 5.1 analogous equations by flux 
surface averaging general balances, thereby annihilating the 
poloidal derivatives). From neoclassical theory [4] the 

The purpose of this section is to compute the flow field 
and the poloidal distribution of the various particle den- 
sities, in the steady state reached when the zeroth-order time 
scale transient is extinguished. We already obtained else- 
where [ 133 the zeroth-order steady state also as a result of 
time evolution; here the equations are solved directly for 
steady state considering that they describe the fastest time 
scale in our model. 

An analysis of the moment equations [ 1, 121, shows that 
to zeroth order in dPi the flow on each magnetic surface is 
purely rigid toroidal and species independent, i.e., 

Vy’ = o(‘)(r) R&,. (12) 

To determine the density variation on the surface one uses 
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then the parallel momentum balance to zeroth order for NOI J l/<NC J I) J-I .Z 

ions and impurities 2.50 , 

1 - - m .o(o)2 2 R2 
2’ ae 

a 
= -TGlognj (0) - &. a @j(O) 

Jad (13) 

and the corresponding balance for the electrons, where 
inertia can be neglected, 

0= -T~logn~)+cz-&@(“J. 

The electrostatic potential Q(O) can then be eliminated, 
imposing quasineutrality of the plasma, 

nip) = ny) + Zn!j). (15) 

The set (13 )-( 15) can be solved straightforwardly [lo]. The 
solution is 

nj”(r, 19) = fij(r) 
A !” 

J 
(A;“)’ 

where we have introduced the flux surface averaged density 
fij and we have defined 

X 
[ 

nj0’(8=0)+Zn$‘(8=0) 5 
n!‘) + Zn$) 1 > (17) 

and the flux surface average of an arbitrary function y of the 
poloidal angle, 

(y(q) Jw) R(e) de 
27zR, ’ 

(18) 

for circular concentric magnetic surfaces with R(B) E 
R, - r cos 8; notice the coordinate system is chosen such 
that 8 = x outboards. 

The solution (16), (17) is in strongly implicit form; there- To illustrate this point, the zeroth order steady state 
fore a simple iteration [2] is used to obtain the explicit solu- densities for the same case of Fig. 1 but taking now 02+ as 
tion. At this level the flux surface functions fij and o(O) are the impurity species are given in Fig. 3. The dependence on 
considered as given, since their radial profiles evolve much c can be qualitatively explained [2] in the limit Cr 4 1 by 
more slowly. linearising (16)-( 17). 

As an example of a typical result of the zeroth order com- We finally remark that the most important feature of the 
putation, poloidal profiles of the ion (dashed line) and zeroth order results is that the densities are updown 
impurity (solid line) densities are shown in Fig. 1, nor- symmetric; this comes from the fact that ion-impurity 
malized to their respective flux surface average. The profiles friction vanishes because of (12), and consequently there is 
refer to the surface which lies at r = a/2, and for the quan- no neoclassical radial transport to this order. 

1.25 

FIG. 1. Zeroth-order steady state solution, as a function of poloidal 
angle 0: PI!“‘/& (dashed line), n$“/riz (solid line). Notice fI = n outboards. 

tities evolving only on the second-order time scale we chose 
the values MACH = 0.75, where the ion Mach number is 
defined as 

ion average density fii = 6.0 x 1019mM3, and impurity 
average density ti, such that 2 - tizZ2/fij = 1; the impurity 
species is oxygen with Z= 6(06+), as for all the other 
numerical examples presented in this paper unless otherwise 
noted. One observes in Fig. 1 the strong nonlinear outboard 
peaking of the impurity density due to the centrifugal force, 
whereas the ions, being still subsonic contrary to the 
impurities, mainly feel the effect of the parallel electric field, 
resulting in an outboard hollow profile. 

When the computation is repeated on surfaces located at 
different minor radii, the 2D distribution of the impurity 
density on the plasma cross section results as shown in 
Fig. 2. The amplitude of the modulation in the poloidal 
density profiles and, in particular, the outboard hollowness 
of the ions, depend on the value of the ratio 
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FIG. 2. Two-dimensional impurity density distribution np(r, 6’)/A, (r = 0) over the plasma cross section; parabolic radial profiles are. assumed, 

4. EVOLUTION ON THE FIRST-ORDER TIME SCALE 

4.1. Equations 

As in the case of negligible rotation it can be shown [ 1 ] 
that the flow up to first order lies on the magnetic surfaces 
and therefore can be decomposed in parallel and 
diamagnetic components 

v.j= ~,j6+$ojR~,, (21) 

where 

w-(r 19) E o(O)(r) + o!‘)(r 0) J ’ J ’ ’ (21’) 

Using the zeroth order solution, the zeroth order momen- 
tum balance in the direction perpendicular to the magnetic 
surfaces gives, for each of the two-ion species (j = i, Z), the 
first-order diamagnetic flow, 

(22) 

1.67 

1.25 

0.62 

0.00 

FIG. 3. Same as Fig. 1, except 0 *+ is the impurity instead of 06+, 

where Sz, = eZjB/mj is the Larmor frequency. It is important 
to notice in (22) that the first term on the right-hand side 
is a completely new contribution to the diamagnetic flow 
coming from the strong rotation of the plasma, while the 
second term reduces for negligible rotation to the well- 
known E x B and Vp x B drifts [ 111. 

The equations which approximately describe the evolu- 
tion on the first-order time scale are the continuity equation 

anj B, 1 a 
-= -y&z at 

B, Viij+zCOjR >I (23) 

and the parallel momentum balance 

aYlj 
at -- 

+ 

2 

+~6.VR2-~~$lognj 
J 

-~~T-$log(n,+Zn,) 
J 

4- ~312 

+poj-f 
TfiJ 

6.VII(V,,,+(B,/B)wjR)B1”] 

B2 

+---- R26 . V log nj 

AI (24) 
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In the right-hand side of (24) the physical meaning of the 
various terms is as follows: the first three terms describe 
inertial forces, the fourth the pressure driven force, the fifth 
the parallel electric field force, the sixth and seventh the 
parallel- (jjoi is defined in [ 143) and gyro-viscous forces, 
respectively, and the last term, the friction force between 
ions and impurities, the sign of this term being plus forj = 2 
and minus for j = i. 

In order to avoid ambiguities two points have to be 
emphasized: (1) the set (23) and (24) does not exactly 
reproduce the first-order transient because the constitutive 
relationships giving the form of the viscous and friction for- 
ces come from steady state balances [ 11; time dependence 
here is a computational artifice to get the steady state solu- 
tion of a strongly nonlinear problem; (2) the set is correct 
only to O(S,,), since it contains some but not all of the 
second-order terms. In particular, conservation laws cannot 
be satisfied to an accuracy better than first order (see [2] 
for details). 

We finally notice that, rigorously, also w(O) evolves on 
the first-order time scale according to the first-order total 
flux surface averaged momentum balance in diamagnetic 
direction 

do”’ 1 -= 
dt Cj ml<Rnj) 

I 

(25) 

where TIJ!” is the first-order viscous stress tensor obtained j 
[ 11. This equation is solved in the code as well, in order 1 
check that the total axial angular momentum be conserve 
to first order. However, the physically significant evolutio 
of o(O), which is driven by the momentum source, takr 
place only on the second-order time scale. 

The driving force for the first-order evolution is the ior 
impurity friction, which appears now, due to the specie 
dependence of mj (I) The latter depends on the radi; . 
gradients of the zeroth order densities and rotatio 
frequency; these gradients are presently taken as give 
quantities, since the radial profiles evolve as seen only o 
the slowest, second-order time scale. 

Space discretization of the system (23)-(2.5) is accon 
plished by means of a Fourier pseudo-spectral metho 
[ 151, taking advantage of the periodicity in poloidal angll 
Typically, 16 to 32 points in 6’ are sufficient to g( 
reasonably accurate results (see next section); this numbs 
increases when one goes from intermediate to large Mac 
numbers. 

To assess the problem associated with the time integr: 
tion of the resulting system of ordinary differential equs 
tions (ODE), the eigenvalues of the evolution operator hau 
been computed numerically, for poloidal profiles typical1 
used as initial condition and parabolic radial profiles, usin 
the NAG [16] routines FOlATF, FOlAKF, and F02API 
From the plot shown in Fig. 4 one sees that the system j 
stiff, with very large, purely real, negative eigenvalue: 
which are superimposed to the usual pattern of an advec 
tion/diffusion problem, dominated by advection in our cas 
In particular, numerical experiments 123 show that i 
absolute value the largest eigenvalues decrease alma! 
proportionally when the ion-impurity friction force i 

-35.00 

-160.0 -128.0 -96.0 -64.0 -32.0 0.0 

RE PART 

FIG. 4. Poloidal Jacobian eigenvalues. Location in the complex plane (Re /Ikr Im ,9*) of the eigenvalues j3* of the first-order evolution operato 
obtained at r = 0 by pseudospectral discretization in & parabolic radial profiles are assumed. 
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artificially reduced. Due to its stiffness, the system of ODE 
resulting from space discretization of (23t(25) is solved by 
the NAG [ 163 routine D02EAF, implementing Gear’s 
method [ 17). 

4.2. Results 

Unless noted otherwise, the values of the parameters used 
for solution are the same as in the zeroth-order case. As 
compared to average plasma conditions in present tokamak 
experiments a very low temperature (we choose T= 35 eV) 
is required in order to have both ions and impurities well in 
the Pfirsch-Schluter regime. The ion transit time turns out 
to be z , x 30 ps, the ion-ion collision time zii x 10 ps, and 
6,,a IO-‘. 

We take as initial poloidal density profiles those corre- 
sponding to the zeroth order steady state, while the initial 
parallel flow velocities correspond to zero poloidal flow and 
given radial gradients of the average densities and rotation 
frequency. In the example discussed in this section, the 
average ion density and average rotation frequency radial 
profiles are parabolic, and both vanish at the boundary; in 
the center, fi, = 8.0 x lOI m -3 and MACH = 1; everywhere 
in radius ? = 1. 

As representative of the first-order evolution, the 
dependence on time of 

K;‘)(r)= B 
( > 
n&j B,, 

0 ii, (26) 

is given in Fig. 5 normalized to Spiuth,, where the dashed line 
refers to the ions and the solid one to the impurities. One 
sees that a steady state characterized by nonzero ion and 
impurity poloidal flows is reached after some rl/api. 

The steady state poloidal profiles of ion (dashed line) and 
impurity (solid line) density, normalized to the respective 

<VPOL[ Jl>/ID*VTH( I 11 J-I .Z 

0.24 

0.18 

FIG. 5. First-order evolution to steady state: ion (dashed line) and FIG. 6. Steady state profiles after relaxation of the first-order evolu- 
impurity (solid line) flux surface averaged poloidal particle flows Kj”, 
normalized to S,, ulhi, vs time. 

tion, as a function of poloidal angle 0. Above: nJ& (dashed line), n,/A, 
(solid line); below: ( Vdi - V&/u,,,. 

tij, and of the difference between ion and impurity toroidal 
flow velocities, normalized to hpiufhi, are shown in Fig. 6. 
One sees that when the first order evolution has reached 
steady state, toroidal ion-impurity friction drives up-down 
asymmetries in the density distribution. The asymmetry 
turns out to be only O(Spj) as expected; still it is very impor- 
tant for radial transport as discussed in the next section. 

In the absence of first-order sources, and of radial trans- 
port to this order, the number of particles for each ion 
species and the total axial angular momentum must be con- 
served on each surface during the evolution. The relative 
errors resulting from the present computation are < 10e9 
and < 10 ~ 3, respectively [2]. The steady state results of the 
first-order evolution were also shown in [20] to be in good 
agreement with those obtained for the static case using the 
same physical model, but a completely different analytical 
method [ 1 ] which is then evaluated numerically. 

Taking again O*+ as impurity species, instead of 06+, 
it was shown elsewhere [2,22] that the amplitude of the 
first-order modulations grows with [ and their spectrum 
changes. 

NOl(Jl/<NlJl) J-I .Z 

2.5a I 

1.67 -- 

1.25 -- 

0.00 m 
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5. EVOLUTION ON THE SECOND-ORDER TIME SCALE 

5.1. Radial Equations 

The equations which describe the evolution of the radial 
profiles of the flux quantities fij and o(O) on the slow second- 
order time scale are the flux surface averaged continuity 
equations for the main ions and the impurities, and the total 
(i.e., summed over species) flux surface averaged axial 
angular momentum balance. 

In the case of Pfnsch-Schhiter collisionality, constant 
uniform temperature, fixed circular concentric magnetic 
surfaces, these equations can be written [ 1,2] 

i ia =--A 
eZj rR, ar 

=-- 

+C <RM,J>, (28) 

where j= i, Z is the species index, the upper indexes in 
parentheses refer to the order in S+ 

F;’ = -Fyi = m,n,~,D,~( v,, - vbi) (29) 

is the first-order toroidal friction, D ,i is a coefficient of 0( 1) 
given in [l], Sj is the (second-order) particle source, and 
M, is the (second-order) toroidal momentum source. The 
poloidal magnetic field Boo = (R/R,) B, will be assumed in 
the following to vary linearly with r, only for the sake of sim- 
plicity; this corresponds to circular concentric equilibria 
with parabolic pressure profiles, neglecting the para- or 
dia-magnetism of the plasma. 

We observe that thanks to the assumption of uniform 
temperature there is no thermal force [3] contribution to 
the friction in (29); for the purpose of later reference we also 
recall that it is customary [ 111 to decompose the toroidal 
friction into two components 

(30) 

the radial transport coming from the perpendicular 

(diamagnetic) component is called classical, and that 
coming from the parallel one, neoclassical. 

Probably the most striking feature of the radial set of 
equations is the fact that, within the limits of the previously 
mentioned simplifying assumptions, the neoclassical radial 
flux of axial angular momentum has no explicit viscosity 
contribution. This results from an exact cancellation 
between the stress tensor contribution proper and the part 
of the convective contribution which comes from the 
viscous force (see [Z] for details). This does not mean, 
however, that the momentum llux is, strictly speaking, 
purely convective, because it is generally not simply propor- 
tional to the particle flux (see (46) and related discussion). 

Using the zeroth order solution of Section 3 the radial 
transport equations can be rewritten as 

ca 
r ar 

(w(O) < R3Fg.‘)) + C (RM, >3 
I 

where 

(31) 

br--$ c=(i-l)$ (33) 
6 I 

and q z rB,/RB, is the safety factor. 
One can notice from (32) and (33) that the model 

contains an isotope effect: in a deuterium plasma with a 
single fully ionized impurity species c = 0, so that the only 
mechanism left for the radial transport of the axial angular 
momentum is classical perpendicular viscosity, which is 
neglected here because it is small; this is an interesting 
feature of the model, since in deuterium plasmas rotation 
velocities have been measured [6] to be larger-i.e., the 
momentum to be better confined-than in hydrogen, for the 
same injected power. 

Since it is convenient for the numerical solution to keep 
the radial system in the form of conservation laws, we 
choose as unknowns the two densities fij and the total axial 
angular momentum 

(34) 

During the solution process one needs, however the 
evolving value u(‘)(t), which depends through (34) non- 
linearly on 9$ (recall from Section 3, Eq. (12), that Al”) 
depends on w (‘) both explicitly and implicitly). After each 
step of the second-order time integration fij and pd are 
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known, and to determine w”‘(t) a double iteration is per- 
formed [2]: the inner one uses the algorithm for the zeroth- 
order solution, starting with given fij and tentative o(O), and 
relaxes to some Ajo’; then, in the outer iteration, a new w(O) 
is determined from this solution and the given .!?$, using 
(34), and the process is repeated until convergence is 
reached. 

For the forthcoming discussion we define 

H”‘z (RF;.‘) cc Tz, 

G(“z (R3Fg.‘) a r,, 
(35) 

,where r, is the impurity radial particle flux, and r, the 
total radial flux of axial angular momentum. The set of 
radial equations to be discretized is then 

an, pl;y+ (Si> 
' 2 

an, ;;y+<Sz) -= --- 
at2 
ayd -= --- 
St, 

; ir (o("G(") + 2 (RM,). 
I 

(36) 

(37) 

Another feature of the model is by now apparent: 
multiplying the continuity equations by the respective 
charges and summing them together one obtains, as a result 
of ambipolarity in particle transport 

From (39) one observes that: first, the system can be 
reduced to two PDE for .!?.$ and, say, fi,, whereas the ion 
density is given at any time by 

E;(r, t)=tq(r, O)+Z(fi,(r, 0)-ii,(r, t)) 

+ I* 2 Zj(Sj> dt; (40) 
Oi 

second, in order to get a steady state in our model the right- 
hand side in (39) must be zero (at least from a given time 
on), and we shall assume for the sake of simplicity that at 
any time 

(Si) = (S,) =o. (41) 

Notice that this is essentially a limitation of our model: 
collisions with electrons, which we neglect here, could in 
fact transport particles out of the plasma, ambipolarly, 
relaxing the need to impose (41); however, as seen in 
Section 1, this would happen only on a time scale longer 

than second order by a factor 0(,/z), i.e., too slow for 
being of any practical interest. 

5.2. Boundary Conditions 

The set of radial equations, for the vector of the 
unknowns E E (fiZ, s$), still has to be supplemented by 
suitable initial and boundary conditions. As the initial 
condition we usually take simple parabolic profiles in the 
radial direction. The question of the boundary conditions is 
rather delicate, as we will see below. 

The fluxes H(l) and G”) depend themselves on radial 
gradients, so that the radial evolution described by 
(36)-(38) is parabolic in nature. Notice, however, that this 
does not mean conventional diffusive behavior where any 
initial profile tends to flatten out in the absence of sources. 
In our case, whenever one of the two ion species flattens out 
the other does in fact peak as a result of ambipolar particle 
transport [4]. 

On the magnetic axis we impose zero fluxes: 

H”‘j,,,=O 3 G”‘J,=,=O (42) 

(note that this is not strictly speaking a boundary condition, 
but rather a constraint on the regularity of the sources). 

At r = a (plasma minor radius) we could in principle 
impose either Dirichlet (on Z) or Neumann (on H(l) and 
G(l)) conditions, or else a combination of the two. Let us 
consider first the case of Dirichlet boundary conditions. 
From a physical point of view they are difficult to justify, at 
least for the density, because there seems to be no obvious 
direct way to maintain it at a prescribed value at the plasma 
edge. Furthermore, the particle fluxes at the boundary are 
now free to adjust themselves, and due to ambipolarity they 
will be either both trivially zero, or in opposite directions; in 
the latter case, during the transient, one of the two ion 
species would llow incontrollably through the boundary 
into the plasma: one would eventually reach some steady 
state, characterized by zero particle fluxes, although not a 
physically significant one, since it would assume the 
availability of either fuel or impurities to feed the plasma 
from outside. One could still in principle impose a Dirichlet 
condition on o(O) at the boundary, but the actual implemen- 
tation of this condition would be problematic due to our 
choice of the radial grid and of the other boundary condi- 
tions (see also the next section). Furthermore, information 
related to the physical mechanism which slows down the 
plasma rotation near the boundary can be more readily 
included in the model using a mixed (Robin) type boundary 
condition, as we are going to see. 

In view of the difficulties just mentioned we impose 
Neumann boundary conditions on the density and a mixed 
boundary condition for the evolution of Y*. 
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Integrating the impurity continuity equation over the 
whole plasma volume one sees that in the absence of particle 
sources the condition to get steady state is that 

H(l)/ = =o i-a 9 (43) 

at least from a given time on, and we will impose this condi- 
tion for all times. 

The physics of the radial set just described is not 
necessarily valid near a limiter or separatrix, where sources 
and sinks could possibly appear already to the first order, as 
opposed to the case treated here where they enter only the 
slow second-order evolution. Therefore we assume for sim- 
plicity that in the boundary region the radial transport of 
axial angular momentum be proportional to the toroidal 
rotation frequency; that is, 

(c~(~)G(~))l,=, = kd”)l,=,. (44) 

This is equivalent to assuming some form of aerodynamic 
drag opposing rotation near the boundary, and for this 
process a number of physical mechanisms have been 
suggested in the past, for instance, charge-exchange. 

For our present purposes the value of 1 can be chosen 
subject to the constraint that the numerically determined 
momentum confinement time rti not be strongly sensitive to 
this choice (see Section 5.4 for further discussion). In order 
to quantify this requirement, we considered the solution of 
an analogous simplified problem [18], together with the 
assumption that the radial momentum flux is proportional 
to the effective viscosity given in [19]: the relevant 
inequality that must be satisfied by Iz is found to be [2], in 
SI units, 

A> 0.25. (45) 

This restriction corresponds physically to the requirement 
that the prescribed transport coefficient at the boundary is 
larger than the average coefficient in the inner region. 

We conclude the discussion of the boundary conditions 
noting that we have imposed the homogeneous condition 
(44) in the driven, inhomogeneous problem (38). This is 
advisable because an inhomogeneous condition would 
make the steady state solution strongly dependent on the 
initial condition. 

5.3. Numerical Method and 1 + 1 D Algorithm 

From the computational physics point of view the essen- 
tial difference between the cases of negligible and strong 
rotation consists in the fact that, while in the former the 

radial fluxes are explicit functions of the quantities evolving 
on the second-order time scale [4], in the latter this 
dependence is an implicit one. In fact, the particle and 
angular momentum radial fluxes are driven by the Iirst- 
order toroidal friction. The analysis of the problem on the 
first-order time scale in Section 4 has shown that the driving 
force giving rise to a nonzero toroidal friction comes from 
two contributions, proportional to dw”)/dr and (a/&) 
log(&/( A,)), respectively. To make the computation self- 
consistent these gradients have to be determined from the 
solution of the radial problem, so that the following proce- 
dure is employed. 

Thanks to the separation of time scales, one can assume 
the radial gradients to be constant during the O(SPi) evolu- 
tion. On the other hand, the radial gradients will change 
during the O(Szi) evolution, so that one will need to recom- 
pute the first-order equilibria on the surfaces in order to 
update the toroidal friction in the radial equations. 

The explicit dependence of H(l) and G(l) on fi, and o(O) 
being unknown, one has to compute the radial derivatives 
on the right-hand sides of the radial system by solving the 
first-order poloidal problem on several magnetic surfaces. 

We choose to solve the radial set with the method of lines. 
Since both the first- and the second-order unknowns evolve 
due to radial gradients of quantities evolving on the other 
time scale, it is natural to discretize the radial coordinate on 
two staggered equidistant meshes as shown in Fig. 7: a 
fluxes mesh A,, where H(l) and G(l) are collocated, with m 
points, the first and last of which at r = 0 (magnetic axis) 

FIG. 7. The 2D (r, 19) mesh: the poloidal angle is uniformly dis- 
cretized; in radius two staggered equidistant meshes are used. The zeroth 
and second-order calculations are performed on -/c,, , the first order on -Ai;. 
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and r = a (plasma ideal surface), respectively; a values mesh 
AO*, where E is collocated, with m 1 = m - 1 points, the first 
of which half the way between the first two points of Ar. 
The radial derivatives are discretized by second-order 
accurate finite differences, but the overall space accuracy of 
the scheme is only first order, because linear interpolation is 
used to map from one mesh to the other. 

There is no way to step forward the radial equations 
implicitly in time because, as already pointed out, the 
explicit dependence of the fluxes on B is unknown. On the 
other hand, one must try to couple, as much as possible, 
the computations on the first- and second-order time scales, 
if the right-hand side in the radial set has to describe a 
diffusion-like operator and not a pure source term. 

The choice of the algorithm for the time integration of the 
radial set is further influenced by the fact that we do not 
require a very stringent time accuracy; this would in fact 
increase disproportionately the number of first-order steady 
states that need be computed, which is the most expensive 
portion of the scheme. 

In view of the points mentioned the choice is basically 
restricted to predictor-corrector and Runge-Kutta 
methods. We use a second-order explicit predictor-correc- 
tor “PC2 with first-order predictor and second-order 
corrector, or a fourth-order explicit Runge-Kutta-Merson 
“RKM4.” Both of the methods allow a control of the local 
truncation error, and require two and five right-hand side 
evaluations, respectively. 

Due to the low relative accuracy required (Z 10p3) and 
to similar stability regions, the two methods are found to 
perform comparably for this problem, in terms of the CPU 
time required to obtain a steady state on the second-order 
time scale. 

The time step size is adapted internally: for a given 
required accuracy (“TOL”), the local truncation error 
(“ERR’) is computed after each step. If ERR > TOL the 
step is rejected and At is halved; if TOLl < ERR < TOL, At 
is kept constant, and if ERR < TOLl for more than k + 1 
steps [ 171, At is doubled. The relative error bound “TOLl” 
that we use is TOLl = TOL/lO, TOLj50 and k = 2,4 for 
PC2 and RKM4, respectively; note that one needs 
TOLl < TOL/2k + ’ not to have to halve the step right after 
having doubled it. 

Since the required accuracy is not very stringent, the 
stability threshold of the method is quickly reached; if at 
some point the step has to be halved after having already 
been doubled previously, the eigenvalues of the Jacobian of 
the radial set are determined numerically, and the new At 
fixed according to an almost marginal stability criterion 
[2]. No further increase of At is allowed in this case, i.e., we 
assume that the Jacobian eigenvalues do not significantly 
vary any more before the system reaches steady state; this is 
verified a posteriori in most instances. 

For the 2D problem dealt with in this paper we propose 
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a 1 + 1 D algorithm, which can now be summarized as 
follows: 

l Initialize E on A02 ; 
l Compute the zeroth order steady state on &‘&, and 

determine the Ajo’ from the result { (16), (17) >; 
l Determine &oco’/& and (LJ/h) log(tij/(A~o’)) on Ar, 

and interpolate 9 from do2 to A1 ; 
l Compute the first-order evolution on &z’r { (23)-(25)), 

and determine H(l) and G(‘) from the result; 
l Impose the boundary conditions on &?, { (42)(44)}; 
l Determine c?H”‘/dr and 13o(‘~G(~)/ar on Jlt,,; 
l Obtained the updated s on Ao, by stepping forward in 

time the radial equations { (37), (38)); 
l Return to step two until a steady state is reached on the 

second-order time scale. 

5.4. Results 

We describe in the following a few representative results 
of the 1 + 1 D computation, showing the evolution to steady 
state of the radial profiles of ion and impurity surface 
averaged density fij and lowest order toroidal rotation fre- 
quency w . (O) Cases with and without momentum sources 
acting on the plasma will be considered. The method PC2 
was used for time integration. A comparison with the 
theoretical results [4] in the case of negligible rotation is 
given in [2], where excellent agreement was found with the 
results of our code. Results of convergence tests are also 
given in [2]. 

The initial condition is, unless noted otherwise, 

iii(r) = 8.0 x 1019[1 - (r/a)‘] 

+ 8.0 x 1019 rne3, 

i(r) = 1, 

and we use a 5 x 16 mesh in the (r, 0) plane. For the 
parameters whose values have not been previously specified 
we take: E,, = 2.5 T, B,,(r) = 0.366(r/a) T, R, = 1.64 m, 
a = 0.4 m. 

We consider first a case without momentum source 
(M, = 0). The boundary conditions are here zero particle 
and momentum (1” = 0) fluxes, i.e., the plasma is an isolated 
system. During the second-order evolution to steady state, 
the total number of ions, cc sz riir dr, the total number of 
impurities, cc f: fi,r dr, and the sum of the ion and impurity 
axial angular momentum, cc fz 9$r dr, are conserved with a 
relative error smaller than lo-l2 [2]. 

The initial (dash-dotted line) and steady state (solid line) 
radial profiles of fij, fi,, and MACH are shown in Fig. 8a as 
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FIG. 8. (a) Second-order evolution in the absence of sources: p = 0, I = 0. Initial (dash-dotted line) and steady state (solid line) radial protiles of ti,, 
n,, and MACH. The dashed line is the theoretically foreseen profile for the nonrotating case [4]. (b) Second-order evolution in the absence of sources: 
p = 0,1= 0. Radial impurity particle flux r, (above) and total axial angular momentum radial flux r, at r = a/2 vs. time (the dashed line corresponds 
to vanishing flux, the dotted to the exact steady state). 

a function of the normalized minor radius r/a. One notes 
that the impurities tend to peak in the center and the ions 
correspondingly to flatten. The dashed line indicates 
here (and in the similar plots that will follow) the profile 
containing the same total number of impurities as the 
obtained fi, profile, and following the obtained iii(r) 
normalized profile to the Zth power: the latter radial 
dependence is the neoclassical prediction for the impurity 
profile in the nonrotating case 141. One sees that in our case 
the steady state profile of the rotation frequency is flat: since 
the Mach number enters the driving force of the first-order 
evolution only through gradients, it has to be expected that 
the density profiles should be in this case the same as in a 

nonrotating plasma. The fact that the rotation frequency 
becomes homogeneous in radius is also intuitive if one 
remembers that in a pure, slowly rotating plasma [ 191 the 
momentum flux is simply proportional to the gradient of the 
rotation velocity: the gradient must then go everywhere to 
zero at steady state, when the system is isolated and there 
are no momentum sources; the level of the uniform rotation 
frequency will be determined by the initial condition 
through conservation of the total axial angular momentum. 
(Since the particle fluxes depend on the combination of ion 
and impurity density gradients, even in the absence of 
particle sources the system generally does not run towards 
flat density profiles at steady state). 



1 + 1D IMPURITY TRANSPORT IN TOKAMAK 313 

To prove that one actually reaches steady state, in Fig. 8b 
we show the computed impurity particle- and axial-angular 
momentum radial fluxes through the surface located at 
r = a/2 vs. time. It is interesting to note from these plots that 
the momentum flux apparently consists of two contribu- 
tions: one, which we could call convective, essentially 
following the particle flux; another, which we could call 
conductive (or pseudo-viscous), going to zero on a slower 
time scale. Recalling (35) this behavior can be related to 
the fact that, due to the poloidal variation of ion-impurity 
friction. 

(R3Fy’) = Ri(RFi’) + other terms. (46) 

We finally notice that, comparing the effective viscosity 
given in [19] (which, however, applies strictly speaking 
only to a pure, slowly rotating plasma) with the diffusion 
coefficient in [4], the fact that r, and r, do not evolve on 
the very same time scale is not unexpected. 

We consider now the evolution of the system subject to 
the action of a momentum source. The source is distributed 
over the plasma cross section according to 

0 00 0.20 0.40 0.60 0 00 1.00 

MINOR RADIUS r/a 
INITIAL &.JD FINAL IMPURITY DENSITY 

0 00 0.20 0.40 0 60 0.80 I .oo 
MINOR RADIUS r/a 

INITIAL AND FINAL MACH NUMBER 

OMEGAlO IrGl 1 I 

(47) 

FIG. 9. (a) Effect of momentum source: same parameters as in Fig. Sa, except .LI = 10e4, I = 0.3. (b) Effect of momentum source: same parameters 
as in Fig. 8b, except p= 10e4, I = 0.3. 
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so that, by analytic integration of (38) in r, and using (44), 
one obtains the rotation frequency at the plasma boundary 
at steady state, 

(48) 

where s0 = 4 + $(a/R,)2, s, = d + &(a/Ro)‘. In the following 
results a uniform source is used, i.e., 6 = 0. (Note that the 
simple form chosen for the source also allows us to deter- 
mine analytically the steady state radial profile of o(‘)G(‘) 
and therefore to check the numerical result: in the case 
6 = 0, e.g., 

(49) 

so that, for instance, T,(r =a/2) must be equal to 
brw(r = a).) 

Equation (48) is used in the following way: one chooses 
a source intensity p giving (by numerical experiment) a 
central Mach number in the range we are interested in (say 
0.4 < MACH < 0.8.); the value of 1 is then chosen such that 
a reasonably low Mach number at the boundary is obtained 
at steady state. This L should finally also satisfy the 
constraint (45). We remark, however, that a very large 2 
requires us to discretize the region near the boundary with 
many points in r; otherwise an artificially negative 
MACH(a) is obtained. 

An easy way to check the results of the second-order 

evolution is to compare the Mach numbers obtained at tl 
boundary in different cases. Notice, when comparing tl 
following results among themselves, that the Mach numb’ 
is discretized on do2, whereas the physical boundary (r = 4 
belongs to ~&‘i. The Mach number at the boundary 
obtained from the result of the code by linear extrapolatic 

MACH(a) z MACH(rz’) 

z iMACH(r$?,) - iMACH(rzZ’,). (5’ 

In Fig. 9a we show the initial and steady state radi 
profiles, for the case p = 10P4, 1=0.3 (SI units). 01 
notices that the presence of a momentum source results in 
nonflat MACH profile at steady state; this in turn leads I 
density profiles which are sensibly different from the; 
predicted for a nonrotating plasma. As before, we prove tl 
attainment of steady state showing in Fig. 9b the impuri, 
particle- and total axial-angular momentum radial fluxes, 
r = a/2 vs. time. While r, still goes to zero (no particle sou 
ces are present), r,,, at steady state balances the momentu 
input in the volume r < a/2. The dotted line represents tl 
exact analytical steady state value which obtains from (49 

In Fig. 10 the corresponding radial profiles obtained 
the case p = 10P4, 2 = 0.6 are given. At steady sta 
MACH(a) turns out to be (with a 2% relative error) ha 
that for the case p = 10P4, ,J = 0.3, as expected. The chara 
teristic times for the second-order evolution are nc 
apparently influenced by the change in 2 [;?I. 

Finally, the radial profiles for the case p = 2 x lo- 
i = 0.6 are shown in Fig. 11. Now MACH(a) results are tl 
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FIG. 10. Same as Fig. 9a, except ,I= 0.6. 
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FIG. 11. Same as Fig. 9a, except p = 2 x lo-“, I = 0.6. 

same (with a less than 1% relative error) as those for the 
case p = 10e4, L = 0.3, as it must be, since the ratio p/J is the 
same. Having doubled the source intensity, compared to the 
case of Fig. 9a, results in a less than proportional increase of 
the central Mach number, indicating that the momentum 
source/toroidal flow relationship is nonlinear. 

6. CONCLUSION 

In this paper we have considered the two-dimensional, 
multiple time scale problem of particle and momentum 
transport in a strongly rotating tokamak plasma con- 
stituted by electron, fuel ion, and a single impurity ion 
species. 

An algorithm has been presented that is capable of 
reducing the full 2D problem to an alternation of 1D 
problems. The steady state distributions of the relevant 
plasma parameters, resulting from the evolution on each of 
the (three) separate time scales, have been computed 
numerically from a multifluid model [ 11. 

On the zeroth-order time scale the impurity density on 
each magnetic surface is strongly peaked outboards due to 
inertial forces, and the rotation on each surface is purely 
rigid toroidal and common to all species. 

On the first-order time scale up-down asymmetries 
appear in the poloidal distribution of the densities, due to 
ion-impurity toroidal friction; the latter results from species 
dependent diamagnetic flow which is related to radial 
gradients of density and rotation frequency, and these are 

taken as given constant in time functions at this stage. Non- 
zero poloidal flows of ions and impurities are obtained at 
steady state. 

On the second-order time scale the evolution of the radial 
profiles takes place, driven by sources and by fluxes 
depending on the toroidal friction; after each time step 
of the second-order evolution the first order can then 
be recomputed using the new radial gradients, and the 
resulting toroidal friction is then used in the subsequent step 
of the second-order computation. 

When the plasma is isolated, the radial profile of the 
toroidal rotation frequency becomes flat after the second- 
order evolution has relaxed to steady state; i.e., the whole 
plasma rotates as a rigid body. The radial profile of the 
densities is the same as in the absence of rotation. 

When the plasma is subject to a momentum source, radial 
gradients in the rotation frequency profile can be main- 
tained at steady state, and the densities distribution is 
different from the nonrotating case. 

In both driven and nondriven problems the evolution of 
the radial profile of toroidal rotation frequency has been 
shown to follow the densities in its first stage, but then to 
reach steady state only at a later time. 

Some requirements of the present model, in particular the 
large plasma collisionality and the constant uniform tem- 
perature assumed, have to be relaxed before a comparison 
with experimental results becomes meaningful (the problem 
of the energy balance in a rotating plasma has been recently 
addressed in [21 I). Our purpose here was to propose 
a computational method based on a physically justified 
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separation of time scales which is not strictly dependent on 
the collisional mechanism assumed; therefore the method 
can be applied in all the cases when the dynamics on the 
magnetic surfaces is much faster than perpendicularly to 
them. A few general trends in the physics of a strongly 
rotating tokamak plasma, which appear, notwithstanding 
the relative simplicity of our model, to have been reported 
elsewhere [22]. 
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